Термостабилизатор с автоматическим резервированием нагревателей

30.03.21

[Домашняя]

 

На страницах журнала "Радио" можно найти описание различных конструкций термостабилизаторов, предназначенных для использования в домашнем овощехранилище. Термостабилизатору, служащему для поддержания небольшой положительной температуры в расположенном на балконе теплоизолированном ящике для хранения овощей в зимний период, посвящена статья [1]- В этой статье обзор различных конструкций термостабилизаторов, описанных в журнале "Радио", указывает на их преимущества и недостатки, а также предлагает свой вариант конструкции термостабилизатора, приводит рекомендации по устройству самого ящика-овощехранилища и выбору нагревательных элементов. В качестве нагревательных элементов для обогрева ящиков небольшого объёма применяют самодельные нагреватели из нихромовой спирали [2] или лампы накаливания. С точки зрения электробезопасности применение ламп накаливания предпочтительнее, но они иногда перегорают. Применение устройств защиты или последовательное соединение ламп накаливания значительно продлевают срок их службы, но полностью исключить вероятность перегораний всё-таки не могут. Так как лампы расположены внутри обогреваемого объёма, визуально контролировать их работоспособность не всегда возможно, а их выход из строя в зимние холода неминуемо приведёт к замерзанию продуктов, находящихся в овощехранилище. Из сказанного выше следует вывод, что термостабилизатор должен осуществлять контроль исправности ламп, выполняющих функции нагревателя. Это можно реализовать, установив в квартире светодиод, подключённый либо параллельно токоограничительному резистору или цепочке диодов, включённых последовательно с лампами-нагревателями (светодиод будет светить в момент включения ламп и гаснуть при их выключении), либо (последовательно с токоограничительным резистором) параллельно контактам реле или симистору, коммутирующему лампы-нагреватели (светодиод будет светить при выключенных лампах и гаснуть при их включении). Однако оба эти варианта индикации не очень информативны, так как не позволяют судить об исправности ламп при отключённом (первый вариант) или включённом (второй вариант) нагревателе. Гораздо информативнее будет индикатор, работающий при протекании через лампы небольшого дежурного тока [3] и позволяющий судить о работоспособности ламп вне зависимости от состояния силового коммутатора термостата. Однако индикация поможет вовремя заметить выход из строя ламп-нагревателей лишь тогда, когда в помещении постоянно находятся люди, способные принять меры по восстановлению нормальной работоспособности нагревателя. В случае установки термостабилизатора там, где люди появляются нечасто, индикация исправности нагревателя не сможет содействовать повышению надёжности устройства. В таком случае единственным верным решением является реализация системы автоматического резервирования ламп- нагревателей, которая в случае неисправности основных ламп автоматически включит резервные. К разработке предлагаемого читателям термостабилизатора автора статьи подтолкнула необходимость обеспечения положительной температуры в хорошо теплоизолированном небольшом боксе, расположенном под домом на дачном участке. В этом боксе находятся бак с небольшим запасом воды, необходимым для бытовых целей в случае приезда на дачу зимой, и насос, подающий эту воду в кран на первом этаже (при отключении насоса вода из трубопровода, соединяющего насос с краном, самотёком сливается в бак, что предотвращает замерзание воды в трубопроводе). Также в боксе расположены блок охранной сигнализации дачного дома и аккумуляторы, обеспечивающие бесперебойную её работу в случае отсутствия электроэнергии и, как известно, "не любящие" сильного мороза. В качестве нагревателей применены четыре лампы накаливания мощностью 300 Вт, соединённые попарно-последовательно и образующие соответственно основной и резервный нагреватели. Температура поддерживается термостабилизатором в боксе в интервале +10... 15 °С, но его несложно настроить и на другой температурный интервал, необходимый, например, для эксплуатации домашнего овощехранилища. Схема термостабилизатора показана на рис. 1.

Датчиком температуры служит терморезистор RK1, который совместно с резисторами R2—R5 образует измерительный мост, напряжение с диагонали которого поступает на входы компаратора DА1. При температуре терморезистора выше установленной подстроечным резистором R3 напряжение на инвертирующем входе компаратора будет больше, чем на неинвертирующем, на его выходе будет низкое напряжение, поэтому транзистор VT1 закрыт и лампы EL1, EL3 обесточены. При снижении температуры сопротивление терморезистора RK1 увеличивается, в результате чего напряжение на инвертирующем входе компаратора уменьшается, и когда оно станет меньше напряжения на неинвертирующем входе, компаратор DA1 переключится и на затвор транзистора VT1 поступит напряжение питания, в результате чего он откроется и на лампы EL1, EL3 поступит напряжение. Одновременно напряжение с выхода компаратора через резистор обратной связи R6, обеспечивающий гистерезис переключения, поступит на его неинвертирующий вход, в результате чего выключение ламп-нагревателей произойдёт при более высокой температуре, чем их включение. Для проверки работоспособности термостабилизатора предусмотрена кнопка SB1 "Тест", при нажатии на которую лампы-нагреватели включаются вне зависимости от температуры терморезистора. Конденсаторы С1 и С2 подавляют помехи на входах компаратора. Для контроля за исправностью ламп EL1 и EL3 в то время, когда они выключены, через них протекает ток, величина которого определяется сопротивлением резистора R8 и составляет около 0,4 мА. Таким образом, вне зависимости от того, открыт транзистор VT1 или нет, прямым напряжением, снимаемым с диода VD9, открыт германиевый транзистор VT2, шунтирующий цепь зарядки конденсатора С4. В случае обрыва в цепи ламп EL1, EL3 падения напряжения на диоде VD9 не будет, транзистор VT2 закроется, в результате чего конденсатор С4 зарядится через резисторы R11 и R12 до напряжения питания и на выводе 9 элемента DD1.1 появится высокий логический уровень. Если на выходе компаратора DA1 в этот момент также присутствует высокий уровень, на выходе элемента DD1.1 появится низкий логический уровень, а на выходе элемента DD1.2 — высокий, что приведёт к открыванию транзистора VT3 и включению резервных ламп-нагревателей EL2 и EL4. Узел индикации выполнен с применением двухцветного светодиода HL1 с кристаллами красного и зелёного свечения, которые включены встречно-параллельно. Для работы узла индикации необходимо пульсирующее напряжение, которое поступает на вывод 5 элемента DD1.2 с диодного моста VD5-—VD8 через резистор R10 и ограничивается по амплитуде стабилитроном VD12. Когда температура в хранилище выше порога включения и лампы-нагреватели выключены, на выводе 6 элемента DD1.3 присутствует низкий логический уровень, запрещающий прохождение импульсов, поступающих на вывод 5 элемента DD1.3. На его выходе присутствует высокий уровень, а на выходе элемента DD1Л — низкий, поэтому светит зелёный кристалл светодиода HL1. При включении основных ламп-нагревателей EL1, EL3 на выводе 6 элемента DD1.3 появляется высокий логический уровень, который разрешает прохождение импульсов с вывода 5. В результате этого на выходе элемента DD1.3 появляются импульсы частотой 100 Гц, что приводит к включению поочередно двух кристаллов светодиода HL1, свечение которого становится жёлтым. В случае перегорания лампы EL1 или EL3 на конденсаторе С4 появляется высокий уровень напряжения, который через диоды VD14, VD15 поступает на оба входа элемента DD1.3. При этом на его выходе появляется низкий логический уровень, в результате чего свечение светодиода HL1 станет красным, сигнализируя о неисправности основных ламп, вне зависимости от того, включены или отключены в данный момент резервные лампы-нагреватели. Источник питания электронной части термостабилизатора собран на понижающем трансформаторе Т1, диодном мосте VD5—VD8 и интегральном стабилизаторе напряжения DA2, обеспечивающем постоянное стабилизированное напряжение питания 12 В. Лампы-нагреватели питаются выпрямленным напряжением с выхода диодного моста VD1—VD4, подключённого к сети 230 В. Следует обратить внимание на то, что при последовательном соединении ламп обеспечивается защита коммутирующих полевых транзисторов от броска тока, который может возникнуть при перегорании нити накаливания одной из ламп. При этом ток будет ограничен сопротивлением нити второй лампы. В случае применения в качестве нагревателей одиночных ламп последовательно с ними необходимо включить плавкие предохранители или автоматические выключатели, номинальные токи которых выбраны соответственно току, потребляемому лампами. Обязательным в этом случае является соблюдение селективности срабатывания защиты, т. е. плавкий предохранитель или автоматический выключатель в цепи лампы должен срабатывать до того, как сработает защита в сети 230 В, к которой подключено устройство. Иначе при перегорании основной лампы и срабатывании защиты в сети 230 В устройство будет обесточено со всеми вытекающими последствиями. Большинство деталей термостабилизатора монтируют на печатной плате из односторонне фольгированного стеклотекстолита толщиной 2 мм, чертёж которой приведён на рис. 2.

Для предотвращения электрического пробоя по поверхности платы между выводами полевых транзисторов в плате желательно сделать прорези шириной 1 мм и покрыть места пайки влагостойким лаком. Диоды VD13—-VD15 монтируют над микросхемой DD1, а резистор R6 — над микросхемой DA1. Стабилитрон VD12 установлен на плате перпендикулярно, для облегчения подбора резисторов R2, R6 их можно составить из двух, соединённых последовательно, расположив их также перпендикулярно плате. Микросхему DA2 необходимо снабдить небольшим теплоотводом площадью несколько квадратных сантиметров. При мощности нагревателей более 200 Вт транзисторы VT1, VT3, а также диоды VD1—N/D4 следует также установить на теплоотводы. В устройстве можно применить резисторы любого типа соответствующей мощности рассеяния, при этом мощность резистора R8 во избежание электрического пробоя должна быть не менее 1 Вт, а лучше 2 Вт, подстроечный резистор — СПЗ-9, Оксидные конденсаторы — К50-35 или импортные, остальные — серий К73, К10-17 или подобные. Вместо диодов КД522А подойдут другие маломощные диоды, например, серий КД521, 1N4148, взамен диодов 1N4004 можно использовать любые из серии 1N4O0X, Диоды КД202М можно заменить диодами КД202Р, 2Д202М и 2Д202Р, а на месте диода VD9 можно использовать диод серии КД202 с любым буквенным индексом. Стабилитрон VD12 — любой маломощный с напряжением стабилизации 10... 12 В. Замена транзисторов IRF840 — транзисторы IRF740 или отечественные серии КП707. Транзистор VT2 должен быть обязательно германиевым; подойдут транзисторы МП35, МП37, МП38 с любым буквенным индексом. Микросхему КР142ЕН8Б можно заменить импортной микросхемой 7812, микросхему К561ТЛ1— микросхемой CD4093BE или К561ЛА7, компаратор К554САЗ может быть с любым буквенным индексом. Кнопка — любая подходящая с самовозвратом, обеспечивающая электробезопасность, например КМ1-1. Тип применённого в конструкции светодиода автору неизвестен, но подойдёт отечественный светодиод КИПД-41 или импортный L-937EGW, L-117EGW. Трансформатор Т1 — любой подходящий с напряжением вторичной обмотки 15...20 В при токе нагрузки 50 мА. В авторском варианте с трансформатором, имеющим напряжение вторичной обмотки 22 В при номинальном напряжении сети устройство сохраняет работоспособность при понижении сетевого напряжения до 130 В, что весьма полезно в условиях сельской местности с хронически пониженным сетевым напряжением. Терморезистор RK1 применён от мультиварки, его конструкция видна на рис. 3.

Терморезистор установлен внутри стального оцинкованного корпуса "грибка", снабжённого пружиной и лепестками, которые можно отогнуть, закрепив его таким образом в отверстии корпуса устройства. Так как терморезистор не имеет обозначения на корпусе, его наименование установить не удалось. Имеющиеся у автора пять экземпляров таких терморезисторов имеют при температуре 20 °С сопротивление от 80 до 90 кОм. Экземпляр, применённый в устройстве, при этой температуре имеет сопротивление 86 кОм, В конструкции можно использовать терморезистор с отрицательным ТКС с другим сопротивлением, пропорционально изменив сопротивление резисторов R2 и R3. Все детали, кроме нагревателей, размещены в пластмассовом боксе на четыре модуля с прозрачной крышкой производства фирмы ЙЭК, предназначенном для монтажа автоматических выключателей и другой модульной аппаратуры (рис. 3). Плата закреплена четырьмя винтами М3 на стойках высотой 10 мм в верхней части основания корпуса. В нижней части основания размещены трансформатор и клеммная колодка, служащая для подключения ламп-нагревателей. Диоды VD1—VD4 смонтированы на текстолитовой пластине, расположенной между трансформатором и платой. Отверстие в крышке корпуса, расположенное подпрозрачной заглушкой, закрыто изнутри пластиной из полистирола, на которой закреплены кнопка SB1, подстроечный резистор R3 и светодиод HL1. Светодиод также можно вынести за пределы устройства, соединив его с ним двухжильным кабелем, изоляция которого рассчитана на работу при сетевом напряжении, или использовать два светодиода, соединённых последовательно, один из которых расположить в корпусе устройства, а другой вынести в удобное для наблюдения место (сопротивление резистора R16 при этом необходимо уменьшить). Терморезистор установлен снаружи корпуса устройства в верхней его части. Для крепления терморезистора использованы его штатные пружина и распорные лапки. Металлический корпус терморезистора соединён с минусовой линией питания. Для предотвращения случайного прикосновения на терморезистор надет пластмассовый колпак (отпиленная нижняя часть от сменного картриджа фильтра "Барьер"), по окружности которого высверлены отверстия диаметром 2...4 мм, предназначенные для свободной циркуляции воздуха внутри колпака. При изготовлении колпака на его нижней части следует оставить два диаметрально противоположных лепестка шириной 10 мм и длиной 15 мм, которые нужно отогнуть перпендикулярно оси колпака, предварительно нагрев их. Через просверленные в этих лепестках отверстия двумя винтами М3 колпак крепится к корпусу устройства. Внешний вид собранного термостабилизатора показан на рис. 4.

Налаживание лучше производить в два этапа. На первом этапе резистор R2 не устанавливают; в качестве нагрузки к выходу устройства подключают соединённые последовательно лампы накаливания (2 группы по 2 лампы) мощностью 60...90 Вт. При включении устройства в сеть должен светить зелёный кристалл светодиода HL1, а лампы нагрузки должны оставаться погашенными. Если при включении устройства зажигаются лампы EL2, EL4, а светодиод светит красным, это означает, что ток базы транзистора VT2 недостаточен для его открывания. В этом случае необходимо уменьшить сопротивление резистора R9 и, при необходимости, резистора R8. Если это не помогает, следует применить другой экземпляр транзистора VT2 с большим значением коэффициента передачи тока базы. Если устройство включается нормально, необходимо нажать на кнопку SB1 — должны включиться лампы EL1, EL3, светодиод при этом сменит цвет с зелёного на жёлтый. Далее необходимо вывернуть из патрона одну из ламп (EL1 или EL3) — спустя приблизительно секунду (продолжительность зарядки конденсатора С4 через резисторы R11, R12) должен засветиться красный кристалл светодиода HL1. Теперь при нажатии на кнопку SB1 должны включиться лампы EL2, EL4; цвет свечения светодиода при этом остаётся красным. Если устройство ведёт себя согласно описанному выше алгоритму, первый этап налаживания завершён. На втором этапе налаживания необходимо установить интервал температуры, в пределах которого будет работать термостабилизатор. Для этого временно взамен резистора R2 устанавливают переменный резистор сопротивлением 330 кОм (назовём его R2*), а движок подстроечного резистора R3 устанавливают в верхнее по схеме положение. Далее наливают в стакан воду и охлаждают её в морозильной камере холодильника примерно до +4 °С, после чего в стакан помещают металлический корпус терморезистора "шляпкой” вниз (при этом не допуская попадания воды внутрь его корпуса) и образцовый термометр. Далее переводят движок переменного резистора R2* в положение максимального сопротивления и, нагревая стакан с помощью расположенной рядом с ним лампы накаливания, наблюдают за показаниями образцового термометра. При достижении температуры, соответствующей необходимому нижнему пределу регулирования (нижней температуре включения), уменьшают сопротивление переменного резистора R2* до момента зажигания ламп EL1, EL3. Продолжая нагревать воду в стакане, определяют температуру, при которой лампы гаснут, и записывают показания термометра — это будет нижняя температура отключения. Далее движок подстроечного резистора R3 переводят в нижнее по схеме положение, при этом лампы EL1, EL3 снова должны включиться, и, продолжая нагревать воду, определяют момент отключения ламп — это будет верхняя температура отключения. После этого стакан помещают в подготовленную заранее ёмкость с ледяной водой. Температура воды в стакане начинает уменьшаться, и в какой-то момент лампы включатся — это будет верхняя температура включения. Если получившийся интервал регулирования температуры устраивает, измеряют сопротивление введённой части переменного резистора R2* и впаивают постоянный резистор этого сопротивления на место резистора R2. Если же интервал регулирования температуры получился слишком узким, устанавливают подстроечный резистор R3 большего сопротивления и повторяют описанную выше процедуру налаживания. Интервал температуры между включением и отключением нагревателя на нижнем и верхнем пределах регулирования — это гистерезис переключения термостабилизатора, величина которого зависит от сопротивления резистора R6. Чем выше сопротивление этого резистора, тем меньше гистерезис, и наоборот. В авторском варианте нижняя температура включения нагревателя — 9,9 °С, нижняя температура отключения — 10,9 °С, верхняя температура включения — 13,1 °С, верхняя температура отключения — 14,3 °С, в итоге интервал регулирования температуры — 3,4 °С и гистерезис — около 1,1 °С. Точную установку температуры в заданном интервале регулирования производят подстроечным резистором R3 с помощью образцового термометра непосредственно в том объёме (помещении), температуру в котором необходимо стабилизировать. Если взамен подстроечного резистора R3 установить переменный с ручкой и проградуировать его шкалу, то такой термостабилизатор можно превратить в довольно универсальный прибор, пригодный для регулирования температуры в различных условиях. При налаживании и эксплуатации устройства следует помнить, что все его элементы, а также корпус терморезистора гальванически связаны с сетью, поэтому следует соблюдать правила электробезопасности. Регулировку сопротивления подстроечного резистора необходимо производить только с помощью отвёртки с хорошо изолированной ручкой, а в процессе налаживания во избежание поражения электрическим током устройство следует питать через разделительный трансформатор.

Радио №12 2018г стр. 36

Домашняя

Дата последнего изменения этого узла 30.03.2021